So You Got a Shell: SSH for Linux Post Exploitation

So you worked hard to find that cool web application exploit and got a shell on the box. Many people not so familiar with the Linux operating system, quickly find themselves throwing there hand in the air and saying; Now what do I do? By popular demand, this is a list of some of my favorite SSH for Linux Post Exploitation techniques that I’ve used over and over in past Cyber Defense competitions and my career.

Note: I’m assuming that you will likely exploit a service level account, such as ftpd, www-data, ldapadmin, squid, apache or syslog, and not immediately have root level access on the system.

One of my overall favorites is utilizing SSH for linux post exploitation,  as a mean of developing access to systems on the internal network and to maintain access. Almost all Linux distro’s come with openssh-client baked in and many also have openssh-server set to run at startup by default. Fortunately, openssh’s config files ship with fairly basic security measures in place and expect system administrators to utilize the many additional security features, that are available, to defend systems. Most simply don’t bother.  Additionally the permissions on the /etc/ssh/ssh_conf and /etc/ssh/sshd_conf files are world readable by default. So start by just checking them out.

User$ cat /etc/ssh/ssh.conf

User$ cat /etc/ssh/sshd.conf

Within /etc/ssh/sshd_conf the default configuration allows for public file authentication; with the following line.

PubkeyAuthentication yes

This line allows for a public key to be passed to the system in order to authenticate as a specified user. This is done by adding your public key to the .ssh/authorized_keys file; under the users home directory structure. Once added you can use the simply ssh to the system, using your private key, while specifying the username.

Note: Most default system service accounts ship with /bin/false or /sbin/nologin as their default, which means ssh wont allow you to login directly via ssh.

So you are looking issued the command cat /etc/passwd and she that your user has no login shell and you say Michael this whole maintaining access with public keys in the authorized_keys file is useless to me. So how about another user of SSH for linux post exploitation; using your user to port forward into the local network over ssh?

So you get a web shell using some fancy new wordpress vulnerability and then you cat out the wp-config.php file and see that the database isn’t hosted on the local system. Now you have to pop another box to access that database right? Wrong. You can create a local port forward the the mysql port with ssh. by using the following command.

ssh -R 9000:<mysql server ip>:3306 www-data@localhost

So now maybe people are thinking of great I have to have a shell again…but www-data has /sbin/nologin! Thats fine we dont need a shell. Just follow the steps above. Use your web shell from the wordpress vulnerability to use ssh-keygen to generate the www-data users keys and .ssh directly. Then simply cat your public key into the .ssh/authorized_keys file, to give you a means of local authentication. You may not be able to get a local shell, but you can still ssh port forward by telling ssh not to use interactive login or allocate a tty with the following command.

ssh -v -nNT -R 9000:<mysql server ip>:3306 www-data@localhost

This will create an ssh tunnel that will port forward all traffic from 9000 to the mysql server on its default port. So simply issue the mysql command to connect on port 9000 and use the credentials in the wp-config.php file.

mysql -u wordpress -p -h <web server ip> -p 9000

Profit!

If you have any questions or want to know more just leave a comment or hit me up on social media.

Leave a Reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.